Table of Contents

[.				
II.	Hydr	U	duction	
	II.0		gen Production Sub-Program Overview	
	II.A	Distrib	uted BDL Production	25
		II.A.1	Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming	25
		II.A.2	National Renewable Energy Laboratory: Distributed Bio-Oil Reforming	29
		II.A.3	Argonne National Laboratory: Distributed Reforming of Renewable Liquids Using Oxygen Transport Membranes (OTMs)	33
	II.B	Biomas	ss Gasification	37
		II.B.1	United Technologies Research Center: A Novel Slurry-Based Biomass Reforming Process	
		II.B.2	Gas Technology Institute: One Step Biomass Gas Reforming-Shift Separation Membrane Reactor	
	II.C	Sanara	tions	
	11.0	II.C.1	Arizona State University: Zeolite Membrane Reactor for Water-Gas Shift Reaction for Hydrogen Production	
		II.C.2	Media and Process Technology Inc.: Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production	
		II.C.3	Pall Corporation: High Performance Palladium-Based Membrane for Hydrogen Separation and Purification	
	II.D	Hydros	gen From Coal	62
	11.10	II.D.1	Praxair, Inc.: Advanced Hydrogen Transport Membranes for Coal Gasification	
		II.D.2	Eltron Research & Development Inc.: Scale Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants	
		II.D.3	United Technologies Research Center: Advanced Palladium Membrane Scale Up for Hydrogen Separation	
		II.D.4	Worcester Polytechnic Institute: Composite Pd and Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification	73
	II.E	Electro	lysis.	79
		II.E.1	Giner Electrochemical Systems, LLC: PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane	
		II.E.2	Proton Energy Systems: High Performance, Low Cost Hydrogen Generation from Renewable Energy	
		II.E.3	Avalence, LLC: High-Capacity, High Pressure Electrolysis System with Renewable Power Sources	
		II.E.4	National Renewable Energy Laboratory: Renewable Electrolysis Integrated System Development and Testing	
		II.E.5	H2Pump, LLC: Process Intensification of Hydrogen Unit Operations Using an Electrochemical Device.	95
		II.E.6	National Renewable Energy Laboratory: Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production	98
	II.F	Hi-Tem	p Thermochemical	
		II.F.1	Science Applications International Corporation: Solar High-Temperature Water Splitting Cycle with Quantum Boost.	
		II.F.2	Argonne National Laboratory: Membrane/Electrolyzer Development in the Cu-Cl Thermochemical Cycle	
		II.F.3	Sandia National Laboratories: Solar Hydrogen Production with a Metal Oxide-Based Thermochemical Cycle	

II.	Hydro	Iydrogen Production (Continued)					
	II.F	Hi-Tem	p Thermochemical (Continued)				
		II.F.4	University of Colorado: Solar-Thermal ALD Ferrite-Based Water Splitting Cycle				
	II.G	Photoel	ectrochemical				
		II.G.1	Stanford University: Nano-Architectures for 3 rd Generation PEC Devices: A Study of MoS ₂ , Fundamental Investigations and Applied Research				
		II.G.2	National Renewable Energy Laboratory: Semiconductor Materials for Photoelectrolysis 129				
		II.G.3	Lawrence Livermore National Laboratory: Characterization and Optimization of Photoelectrode Surfaces for Solar-to-Chemical Fuel Conversion				
		II.G.4	University of Nevada, Las Vegas: Characterization of Materials for Photoelectrochemical (PEC) Hydrogen Production				
		II.G.5	MVSystems, Incorporated: Photoelectrochemical Hydrogen Production				
		II.G.6	Midwest Optoelectronics, LLC: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen				
		II.G.7	University of Arkansas, Little Rock: PEC-Based Hydrogen Production with Self-Cleaning Solar Concentrator				
		II.G.8	University of Nevada, Reno: Photoelectrochemical Hydrogen Generation from Water Using TiSi ₂ -TiO ₂ Nanotube Core-Shell Structure				
		II.G.9	University of South Dakota: USD Catalysis Group for Alternative Energy				
		II.G.10	University of Nebraska, Omaha: Novel Photocatalytic Metal Oxides				
			University of Nevada, Reno: Solar Thermal Hydrogen Production				
		II.G.12	National Renewable Energy Laboratory: Photoelectrochemical Materials: Theory and Modeling				
		II.G.13	Synkera Technologies Inc.: Nanotube Array Photoelectrochemical Hydrogen Production 181				
	II.H	Biologic	cal				
		_	National Renewable Energy Laboratory: Biological Systems for Hydrogen Photoproduction 185				
		II.H.2	National Renewable Energy Laboratory: Fermentation and Electrohydrogenic Approaches to Hydrogen Production				
		II.H.3	J. Craig Venter Institute: Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System				
		II.H.4	University of California, Berkeley: Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures				
		II.H.5	Purdue University: Purdue Hydrogen Systems Laboratory: Hydrogen Production				
	II.I	Product	tion Analysis				
	II.J	II.I.1	National Renewable Energy Laboratory: H2A Production Model Updates				
	11.j	II.J.1	Giner Electrochemical Systems, LLC: Unitized Design for Home Refueling Appliance				
			for Hydrogen Generation to 5,000 psi				
		II.J.2	Proton Energy Systems: Hydrogen by Wire - Home Fueling System				
		II.J.3 II.J.4	University of Texas, Arlington: Value-Added Hydrogen Generation with CO ₂ Conversion 218 Physical Optics Corporation: Photochemical System for Hydrogen Generation				
	II.K	Basic E	nergy Sciences				
		II.K.1	Stanford University: SISGR: Using <i>In vitro</i> Maturation and Cell-free Evolution to Understand [Fe-Fe]hydrogenase Activation and Active Site Constraints				
		II.K.2	University of Washington: Phototrophic metabolism of organic compounds generates excess reducing power that can be redirected to produce H_2 as a biofuel				
		II.K.3	University of Georgia: Fundamental Studies of Recombinant Hydrogenases				
		II.K.4	University of Washington: Prospects for Hydrogen Production from Formate by Methanococcus maripaludis				
		II.K.5	National Renewable Energy Laboratory: Structural, Functional, and Integration Studies of Solar-Driven, Bio-Hybrid, H ₂ -Producing Systems				
		II.K.6	University of Oklahoma: Genes Needed For H ₂ Production by Sulfate Reducing Bacteria 242				

II.	Hydro	ogen Pro	duction (Continued)
	II.K	Basic E	nergy Sciences (Continued)
		II.K.7	University of Missouri: Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-reducing Bacteria
		II.K.8	National Renewable Energy Laboratory: Regulation of H ₂ and CO ₂ Metabolism: Factors Involved in Partitioning of Photosynthetic Reductant in Green Algae
		II.K.9	University of Rochester: Excited State Dynamics in Semiconductor Quantum Dots
			Princeton University: Theoretical Research Program on Bio-inspired Inorganic Hydrogen Generating Catalysts and Electrodes
		II.K.11	Virginia Polytechnic Institute and State University: Photoinitiated Electron Collection in Mixed-Metal Supramolecular Complexes: Development of Photocatalysts for
		II.K.12	Hydrogen Production
		II.K.13	University of Pennsylvania: Modular Designed Protein Constructions for Solar Generated H ₂ from Water
		II.K.14	University of Alabama, Tuscaloosa: Protein-Templated Synthesis and Assembly of Nanostructures for Hydrogen Production
		II.K.15	Brookhaven National Laboratory: Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors
		II.K.16	Stony Brook University: Quantum theory of Semiconductor-Photo-Catalysis and Solar Water Splitting
		II.K.17	University of Arizona: Formation and Characterization of Semiconductor Nanorod/Oxide Nanoparticle Hybrid Materials: Toward Vectoral Electron Transport in Hybrid Materials 275
		II.K.18	University of Wyoming: Combinatorial methods for the Improvement of Semiconductor Metal Oxide Photoelectrodes
		II.K.19	Pennsylvania State University: A Hybrid Biological-Organic Half-Cell for Generating Dihydrogen
		II.K.20	California Institute of Technology: Fundamental Optical, Electrical, and Photoelectrochemical Properties of Catalyst-Bound Silicon Microwire Array Photocathodes for Sunlight-Driven Hydrogen Production
		II.K.21	National Renewable Energy Laboratory: New Directions for Efficient Solar Water Splitting Based on Two Photosystems and Singlet Fission Chromophores
III.	Undre	ogon Doli	ivery
111.	Tiyur	III.0	Hydrogen Delivery Sub-Program Overview
		III.0 III.1	Sandia National Laboratories: Hydrogen Embrittlement of Structural Steels
		III.2	Argonne National Laboratory: Hydrogen Delivery Infrastructure Analysis
		III.3	Oak Ridge National Laboratory: Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage
		III.4	National Renewable Energy Laboratory: Hydrogen Delivery Analysis
		III.5	Lawrence Livermore National Laboratory: Demonstration of Full-Scale Glass Fiber Composite Pressure Vessels for Inexpensive Delivery of Cold Hydrogen
		III.6	Savannah River National Laboratory: Fiber Reinforced Composite Pipeline
		III.7	Lincoln Composites, Inc.: Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery
		III.8	Concepts NREC: Development of a Centrifugal Hydrogen Pipeline Gas Compressor
		III.9	Mohawk Innovative Technologies, Inc.: Oil-Free Centrifugal Hydrogen Compression Technology Demonstration
		III.10	FuelCell Energy, Inc.: Electrochemical Hydrogen Compressor
		III.11	Praxair, Inc.: Advanced Hydrogen Liquefaction Process

III.12

III.13

University of Illinois at Urbana-Champaign: A Combined Materials Science/Mechanics

III.0	Hydro	Hydrogen Delivery (Continued)						
		III.14	Lawrence Livermore National Laboratory: Thermodynamic Modeling of Rapid Low Loss Cryogenic Hydrogen Refueling	. 358				
		III.15	Oak Ridge National Laboratory: Integrity of Steel Welds in High-Pressure Hydrogen Environment.	. 362				
		III.16	Argonne National Laboratory: Hydrogen Pipeline Compressors	. 367				
		III.17	Prometheus Energy: Active Magnetic Regenerative Liquefier	. 371				
IV.	Hydro	_	rage					
	IV.0	Hydrog	en Storage Sub-Program Overview	. 377				
	IV.A		Hydride	. 383				
			Savannah River National Laboratory: Amide and Combined Amide/Borohydride Investigations	. 383				
		IV.A.2	Northwestern University: Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen Storage: A Combined Computational/Experimental Approach	. 388				
		IV.A.3	University of Hawaii: Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides	. 393				
		IV.A.4	Ohio State University: Lightweight Metal Hydrides for Hydrogen Storage	. 398				
		IV.A.5	University of Illinois at Urbana-Champaign: Reversible Hydrogen Storage Materials - Structure, Chemistry, and Electronic Structure.	. 403				
		IV.A.6	Brookhaven National Laboratory: Aluminum Hydride	. 409				
		IV.A.7	Savannah River National Laboratory: Electrochemical Reversible Formation of Alane	. 413				
		IV.A.8	Sandia National Laboratories: Tunable Thermodynamics and Kinetics for Hydrogen Storage: Nanoparticle Synthesis Using Ordered Polymer Templates	. 416				
		IV.A.9	National Institute of Standards and Technology: Neutron Characterization in Support of the DOE Hydrogen Storage Sub-Program	. 420				
	IV.B	Chemic	al Hydrogen Storage	. 425				
			University of Oregon: Hydrogen Storage by Novel CBN Heterocycle Materials					
		IV.B.2	Los Alamos National Laboratory: Fluid Phase Chemical Hydrogen Storage Materials	. 429				
	IV.C	Hydrog	en Sorption	. 432				
		IV.C.1	Texas A&M University: A Biomimetic Approach to Metal-Organic Frameworks with High H ₂ Uptake	. 432				
		IV.C.2	University of California, Los Angeles: A Joint Theory and Experimental Project in the Synthesis and Testing of Porous COFs/ZIFs for On-Board Vehicular Hydrogen Storage	. 439				
		IV.C.3	University of Missouri: Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage					
		IV.C.4	Northwestern University: New Carbon-Based Porous Materials with Increased Heats					
			of Adsorption for Hydrogen Storage	. 450				
			Argonne National Laboratory: Hydrogen Storage through Nanostructured Porous Organic Polymers (POPs)	. 455				
		IV.C.6	Pennsylvania State University: Hydrogen Trapping through Designer Hydrogen Spillover Molecules with Reversible Temperature and Pressure-Induced Switching	. 459				
		IV.C.7	National Renewable Energy Laboratory: Weak Chemisorption Validation	. 464				
		IV.C.8	State University of New York, Syracuse: Nanostructured Activated Carbon for Hydrogen Storage	. 470				
		IV.C.9	University of California, Los Angeles: Hydrogen Storage in Metal-Organic Frameworks	. 474				
	IV.D	H2 Sto	rage Engineering Center of Excellence	. 479				
			Savannah River National Laboratory: Hydrogen Storage Engineering Center of Excellence					
			National Renewable Energy Laboratory: System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage					
		IV.D.3	Los Alamos National Laboratory: Chemical Hydride Rate Modeling, Validation, and System Demonstration	491				

IV.	Hydrogen	Storage ((Continued)

	IV.D	H2 Storage Engineering Center of Excellence (Continued)				
		IV.D.4	Jet Propulsion Laboratory: Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems	494		
		IV.D.5	Savannah River National Laboratory: SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence: Design and Testing of Metal Hydride and Adsorbent Systems	498		
		IV.D.6	Pacific Northwest National Laboratory: Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for On-Board Hydrogen Storage			
		IV.D.7	United Technologies Research Center: Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage	511		
		IV.D.8	General Motors Company: Optimization of Heat Exchangers and System Simulation of On-Board Storage Systems Designs	517		
		IV.D.9	Ford Motor Company: Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence			
		IV.D.10	Oregon State University: Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage			
		IV.D.11	Lincoln Composites, Inc.: Development of Improved Composite Pressure Vessels for Hydrogen Storage.			
	IV.E	_	Testing, Safety and Analysis			
		IVE 2	Argonne National Laboratory: System Level Analysis of Hydrogen Storage Options			
			TIAX, LLC: Cost Analyses of Hydrogen Storage Materials and On-Board Systems			
		IV.E.4				
		IV.E.5	National Renewable Energy Laboratory: Analysis of Storage Needs for Early Motive Fuel Cell Markets	558		
		IV.E.6	Southwest Research Institute®: Standardized Testing Program for Solid-State Hydrogen Storage Technologies	562		
		IV.E.7	H2 Technology Consulting LLC: Best Practices for Characterizing Engineering Properties of Hydrogen Storage Materials			
		IV.E.8	Hydrogen Education Foundation: Administration of H-Prize for Hydrogen Storage	571		
	IV.F	Tanks .				
		IV.F.1 IV.F.2	Oak Ridge National Laboratory: High Strength Carbon Fibers			
	IV.G		Cutting			
			Purdue University: Purdue Hydrogen Systems Laboratory: Hydrogen Storage			
		IV.G.3	Storage Delaware State University: Hydrogen Storage Materials for Fuel Cell-Powered Vehicles			
V.	Fuel C	Cells		597		
	V.0		lls Sub-Program Overview			
	V.A		s/Characterization			
	,,,,,	V.A.1	National Renewable Energy Laboratory: Analysis of Laboratory Fuel Cell Technology Status – Voltage Degradation			
		V.A.2	Directed Technologies, Inc.: Mass-Production Cost Estimation for Automotive Fuel Cell Systems			
		V.A.3 V.A.4	Argonne National Laboratory: Drive-Cycle Performance of Automotive Fuel Cell Systems Oak Ridge National Laboratory: Characterization of Fuel Cell Materials	614		

V. Fuel Cells (Continued)

V.A	Analysi	is/Characterization (Continued)	
	V.A.5	National Institute of Standards and Technology: Neutron Imaging Study of the Water Transport in Operating Fuel Cells	626
	V.A.6	Los Alamos National Laboratory: Technical Assistance to Developers	631
	V.A.7	National Renewable Energy Laboratory: Enlarging the Potential Market for Stationary Fuel Cells Through System Design Optimization	634
	V.A.8	Argonne National Laboratory: Fuel Cell Testing at the Argonne Fuel Cell Test Facility: A Comparison of U.S. and EU Test Protocols	
V.B	Impurit	ties	
V.D	V.B.1	National Renewable Energy Laboratory: Effect of System Contaminants on PEMFC Performance and Durability	
	V.B.2	University of Connecticut: The Effects of Impurities on Fuel Cell Performance and Durability	
	V.B.3	Hawaii Natural Energy Institute: The Effect of Airborne Contaminants on Fuel Cell Performance and Durability	
	V.B.4	Clemson University: Effects of Impurities on Fuel Cell Performance and Durability	
	V.B.5	Los Alamos National Laboratory: Effects of Fuel and Air Impurities on PEM Fuel	
		Cell Performance	
V.C		anes	
	V.C.1	3M Company: Membranes and MEAs for Dry, Hot Operating Conditions	
	V.C.2	Giner Electrochemical Systems, LLC: Dimensionally Stable Membranes (DSMs)	667
	V.C.3	Giner Electrochemical Systems, LLC: Dimensionally Stable High Performance Membrane (SBIR Phase III)	671
	V.C.4	Case Western Reserve University: Poly(p-Phenylene Sulfonic Acids): PEMs with Frozen-In Free Volume	675
	V.C.5	Vanderbilt University: NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells.	680
	V.C.6	Colorado School of Mines: Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes	
	V.C.7	FuelCell Energy, Inc.: High-Temperature Membrane with Humidification-Independent	
	V.C.8	Cluster Structure	
	v.c.8 V.C.9	University of Central Florida: Lead Research and Development Activity for DOE's	094
		High Temperature, Low Relative Humidity Membrane Program	
V.D		sts	
	V.D.1	3M Company: Advanced Cathode Catalysts and Supports for PEM Fuel Cells	
	V.D.2	UTC Power: Highly Dispersed Alloy Catalyst for Durability	
	V.D.3	3M Company: Durable Catalysts for Fuel Cell Protection During Transient Conditions	714
	V.D.4	National Renewable Energy Laboratory: Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes	719
	V.D.5	Argonne National Laboratory: Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading	723
	V.D.6	Brookhaven National Laboratory: Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability Low-Cost Supports	729
	V.D.7	Los Alamos National Laboratory: The Science and Engineering of Durable Ultralow PGM Catalysts	
	V.D.8	Lawrence Berkeley National Laboratory: Molecular-Scale, Three-Dimensional Non-Platinum Group Metal Electrodes for Catalysis of Fuel Cell Reactions	
	V.D.9	National Renewable Energy Laboratory: Tungsten Oxide and Heteropoly Acid Based	
	VD 10	System for Ultra-High Activity and Stability of Pt Catalysts in PEM Fuel Cell Cathodes Illinois Institute of Technology: Synthesis and Characterization of Mixed-Conducting	/45
	V.D.10	Corrosion Resistant Oxide Supports	752

V. Fuel Cells (Continued)

V.D	Catalys	ts (Continued)	
	V.D.11	Northeastern University: Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications	756
	V.D.12	General Motors Company: High-Activity Dealloyed Catalysts	
		University of South Carolina: Development of Ultra-Low Platinum Alloy Cathode Catalyst for PEM Fuel Cells	
	V.D.14	Los Alamos National Laboratory: Engineered Nano-Scale Ceramic Supports for PEM Fuel Cells.	
	V.D.15	Pacific Northwest National Laboratory: Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells	
	. 1		
V.E	·	ation Studies	783
	V.E.1	Argonne National Laboratory: Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation	787
	V.E.2	Los Alamos National Laboratory: Durability Improvements Through Degradation Mechanism Studies	
	V.E.3	E. I. du Pont de Nemours and Company: Analysis of Durability of MEAs in Automotive PEMFC Applications.	
	V.E.4	Ballard Power Systems: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches	
	V.E.5	Nuvera Fuel Cells, Inc.: Durability of Low Platinum Fuel Cells Operating at High Power Density	
	V.E.6	UTC Power: Improved Accelerated Stress Tests Based on FCV Data	
	V.E.7	Los Alamos National Laboratory: Accelerated Testing Validation	810
V.F	Transpo	ort Studies	814
	V.F.1	CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization	
	V.F.2	Sandia National Laboratories: Development and Validation of a Two-Phase, Three-Dimensional Model for PEM Fuel Cells	
	V.F.3	Giner Electrochemical Systems, LLC: Transport in PEMFC Stacks	
	V.F.4	General Motors Company: Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance	827
	V.F.5	Plug Power Inc.: Air-Cooled Stack Freeze Tolerance	
	V.F.6	Nuvera Fuel Cells, Inc.: Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks.	
	V.F.7	Lawrence Berkeley National Laboratory: Fuel Cell Fundamentals at Low and Subzero	841
V.G	Portabl	e Power	
٧.٠٥	V.G.1	National Renewable Energy Laboratory: Novel Approach to Advanced Direct Methanol Fuel Cell (DMFC) Anode Catalysts	
	V.G.2	Arkema Inc.: Novel Materials for High Efficiency Direct Methanol Fuel Cells	
	V.G.3	University of North Florida: New MEA Materials for Improved Direct Methanol Fuel Cell (DMFC) Performance, Durability, and Cost	
	V.G.4	Los Alamos National Laboratory: Advanced Materials and Concepts for Portable Power Fuel Cells.	
V.H	Hardw	are	
٧.11	V.H.1	TreadStone Technologies, Inc.: Low-Cost PEM Fuel Cell Metal Bipolar Plates	
	V.H.2	Argonne National Laboratory: Metallic Bipolar Plates with Composite Coatings	
V.I		tive Concepts	
V.1	V.I.1	Los Alamos National Laboratory: Resonance-Stabilized Anion Exchange Polymer	0/2
	٧.1.1	Electrolytes	872

7.	Fuel	Cells (Co	ontinued)	
	V.I	Innova	tive Concepts (Continued)	
		V.I.2	Versa Power Systems: Advanced Materials for RSOFC Dual Mode Operation with Low Degradation	976
		- 1	<u> </u>	
	V.J	Balance V.J.1	e of Plant	
		V.J.2	Fuel Cell Humidifiers	
		V.J.3	Dynalene Inc.: Large Scale Testing, Demonstration and Commercialization of the Nanoparticle-Based Fuel Cell Coolant	
	V.K	Distrib	uted Energy	890
		V.K.1	Acumentrics Corporation: Development of a Low-Cost 3-10 kW Tubular SOFC Power System	
		V.K.2	Intelligent Energy: Development and Demonstration of a New Generation High Efficiency 10 kW Stationary PEM Fuel Cell System	
		V.K.3	IdaTech, LLC: Research & Development for Off-Road Fuel Cell Applications	
		V.K.4	InnovaTek, Inc.: Power Generation from an Integrated Biomass Reformer and Solid Oxide Fuel Cell	
	V.L		Cutting	
		V.L.1 V.L.2	University of Akron: Development of Kilowatt-Scale Coal Fuel Cell Technology	
		V.L.3	Independence	
		V.L.4	University of South Carolina: Hydrogen Fuel Cell Development in Columbia (SC)	
		V.L.5	Stark State College of Technology: Fuel Cell Balance of Plant Reliability Testbed	
		V.L.6	Colorado School of Mines: Biomass Fuel Cell Systems	
		V.L.7	Dynalene Inc.: Fuel Cell Coolant Optimization and Scale Up	
		V.L.8	Kettering University: 21st Century Renewable Fuels, Energy, and Materials Initiative	
		V.L.9	University of Connecticut Global Fuel Cell Center: Improving Reliability and Durability of Effi cient and Clean Energy Systems	
		V.L.10	Stark State College of Technology: Solid Oxide Fuel Cell Systems Print Verification Line (PVL) Pilot Line	
			Line (1 v L) Fliot Line	950
Ί.	Manı	ıfacturin	g R&D	953
		VI.0	Manufacturing R&D Sub-Program Overview	955
		VI.1	National Renewable Energy Laboratory: Fuel Cell Membrane Electrode Assembly Manufacturing R&D	959
		VI.2	Ballard Material Products, Inc.: Reduction in Fabrication Costs of Gas Diffusion Layers	963
		VI.3	UltraCell Corporation: Modular, High-Volume Fuel Cell Leak-Test Suite and Process	968
		VI.4	W.L. Gore & Associates, Inc.: Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning	971
		VI.5	Rensselaer Polytechnic Institute: Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture	
		VI.6	National Institute of Standards and Technology: Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance	
		VI.7	BASF Fuel Cell, Inc.: High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies	
		VI.8	Pacific Northwest National Laboratory: MEA Manufacturing R&D Using Drop-On-Demand Technology	
		VI.9	Quantum Fuel Systems Technologies Worldwide, Inc.: Development of Advanced	991
		v 1.9	Manufacturing Technologies for Low Cost Hydrogen Storage Vessels	995

VI.	Manufacturing	g R&D (Continued)	
	VI.10	National Institute of Standards and Technology: Non-Contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks	999
	VI.11	National Institute of Standards and Technology: Optical Scatterfield Metrology for	
		Online Catalyst Coating Inspection of PEM (Fuel Cell) Soft Goods	1003
VII.	Technology Va	ılidation	1009
	VII.0	Technology Validation Sub-Program Overview	
	VII.1	National Renewable Energy Laboratory: Controlled Hydrogen Fleet and Infrastructure	
		Analysis	1017
	VII.2	General Motors Company: Hydrogen Vehicle and Infrastructure Demonstration and Validation	1023
	VII.3	Mercedes-Benz Research & Development North America, Inc.: Hydrogen to	
		the Highways - Controlled Hydrogen Fleet and Infrastructure Demonstration	
		and Validation Project	
	VII.4	Air Products and Chemicals, Inc.: Validation of an Integrated Hydrogen Energy Station	
	VII.5	National Renewable Energy Laboratory: Technology Validation: Fuel Cell Bus Evaluations.	
	VII.6	Air Products and Chemicals, Inc.: California Hydrogen Infrastructure Project	
	VII.7	Hawaii Natural Energy Institute: Hawaii Hydrogen Power Park	
	VII.8 VII.9	University of Central Florida: Florida Hydrogen Initiative (FHI)	1046
	V 11.9	California State University, Los Angeles	1050
VIII.	Safety, Codes	& Standards	1053
	VIII.0	Safety, Codes & Standards Sub-Program Overview	1055
	VIII.1	Sandia National Laboratories: Hydrogen Safety, Codes and Standards R&D – Release Behavior	1061
	VIII.2	Sandia National Laboratories: Risk-Informed Safety Requirements for H2 Codes and	
	17111 7	Standards Development	
	VIII.3	National Renewable Energy Laboratory: Component Standard Research and Development Sandia National Laboratories: Hydrogen Materials and Components Compatibility	
	VIII.4 VIII.5	Sandia National Laboratories: Hydrogen Materials and Components Company Sandia National Laboratories: Component Testing for Industrial Trucks and Early	10/5
	V 111.J	Market Applications	1079
	VIII.6	National Renewable Energy Laboratory: National Codes and Standards Coordination	
	VIII.7	National Renewable Energy Laboratory: Codes and Standards Outreach for Emerging	
		Fuel Cell Technologies.	1087
	VIII.8	Los Alamos National Laboratory: Leak Detection and H ₂ Sensor Development for	
		Hydrogen Applications	
		Los Alamos National Laboratory: Hydrogen Fuel Quality Research and Development	
		Pacific Northwest National Laboratory: Hydrogen Safety Panel	
		Pacific Northwest National Laboratory: Hydrogen Safety Knowledge Tools	1104
	V111.12	Pacific Northwest National Laboratory: Hydrogen Emergency Response Training for First Responders.	1107
	VIII.13	Lawrence Livermore National Laboratory: Hydrogen Safety Training for Researchers	1107
		and Technical Personnel	1110
	VIII.14	Intelligent Optical Systems, Inc.: Hydrogen Leak Detection System Development	
	VIII.15	Sandia National Laboratories: International Energy Agency Hydrogen Implementing	
		Agreement Task 19 Hydrogen Safety	
	VIII.16	Oak Ridge National Laboratory: MEMS Hydrogen Sensor for Leak Detection	1122
IX.	Education		1125
	IX.0	Education Sub-Program Overview	1127
	IX.1	Argonne National Laboratory: Employment Impacts of Early Markets for Hydrogen	1171

IX. Education (Continued)

	IX.2	Connecticut Center for Advanced Technology, Inc.: State and Local Government Partnership	1135			
	IX.3	Clean Energy States Alliance: Hydrogen Education State Partnership Program				
	IX.4	South Carolina Hydrogen and Fuel Cell Alliance: Development of Hydrogen Education Programs for Government Officials				
	IX.5	Commonwealth of Virginia: VA-MD-DC Hydrogen Education for Decision Makers				
	IX.6	Technology Transition Corporation: H2L3: Hydrogen Learning for Local Leaders				
	IX.7	Ohio Fuel Cell Coalition: Raising H ₂ and Fuel Cell Awareness in Ohio				
	IX.8	Carolina Tractor & Equipment Co. Inc.: Dedicated to The Continued Education,				
		Training and Demonstration of PEM Fuel Cell-Powered Lift Trucks In Real-World Applications	1155			
	IX.9	California State University, Los Angeles: Hydrogen and Fuel Cell Education at California State University, Los Angeles.	1158			
	IX.10	Humboldt State University Sponsored Programs Foundation: Hydrogen Energy in Engineering Education (H ₂ E ³)				
	IX.11	Michigan Technological University: Hydrogen Education Curriculum Path at Michigan Technological University				
	IX.12	University of Central Florida: Hydrogen and Fuel Cell Technology Education Program (HFCT)				
	IX.13	University of North Dakota: Development of a Renewable Hydrogen Production and Fuel Cell Education Program				
	IX.14	National Energy Education Development Project: H ₂ Educate! Hydrogen Education for Middle Schools				
	IX.15	University of California, Berkeley: Hydrogen Technology and Energy Curriculum (HyTEC)				
X.	Market Transformation					
	X.0	Market Transformation Activities	1187			
	X.1	Sandia National Laboratories: Fuel Cell Mobile Lighting	1191			
	X.2	Longitude 122 West, Inc.: Economic Analysis of Bulk Hydrogen Storage for Renewable Utility Applications				
	X.3	Hawaii Natural Energy Institute: Hydrogen Energy Systems as a Grid Management Tool				
	X.4	Pacific Northwest National Laboratory: Fuel Cell Combined Heat and Power Industrial Demonstration				
	X.5	National Renewable Energy Laboratory: Green Communities				
	X.6	National Renewable Energy Laboratory: Direct Methanol Fuel Cell Material Handling Equipment Demonstration				
	X.7	South Carolina Hydrogen and Fuel Cell Alliance: Landfill Gas-to-Hydrogen				
	X.8	Lawrence Livermore National Laboratory: Incorporation of Two Ford H ₂ ICE Buses into the Shuttle Bus Fleet				
	X.9	Sandia National Laboratories: PEM Fuel Cell Systems for Commercial Airplane Systems Power				
	X.10	Pacific Northwest National Laboratory: Assessment of Solid Oxide Fuel Cell Power System for Greener Commercial Aircraft	1220			
XI.	Systems Analy	ysis	1223			
	XI.0	Systems Analysis Sub-Program Overview				
	XI.1	Oak Ridge National Laboratory: Non-Automotive Fuel Cells: Market Assessment and Analysis of Impacts of Policies				
	XI.2	National Renewable Energy Laboratory: Hydrogen Infrastructure Market Readiness Analysis				
	XI.3	National Renewable Energy Laboratory: Infrastructure Analysis of Early Market Transition of Fuel Cell Vehicles	1240			

XI.	Systems Analysis (Continued)				
	XI.4	Sandia National Laboratories: Analysis of the Effects of Developing New Energy Infrastructures			
	XI.5	National Renewable Energy Laboratory: Cost and GHG Implications of Hydrogen for Energy Storage			
	XI.6	Argonne National Laboratory: Emissions Analysis of Electricity Storage with Hydrogen 1251			
	XI.7	National Renewable Energy Laboratory: NEMS-H2: Hydrogen's Role in Climate Mitigation and Oil Dependence Reduction			
	XI.8	Argonne National Laboratory: GREET Model Development and Life-Cycle Analysis Applications			
	XI.9	National Renewable Energy Laboratory: Macro-System Model			
	XI.10	National Renewable Energy Laboratory: HyDRA: Hydrogen Demand and Resource Analysis Tool			
	XI.11	Lawrence Livermore National Laboratory: Energy Informatics: Support for Decision Makers through Energy, Carbon and Water Analysis			
	XI.12	Argonne National Laboratory: Fuel Quality Effects on Stationary Fuel Cell Systems			
XII.	American Rec	overy and Reinvestment Act Activities			
	XII.0	American Recovery and Reinvestment Act Activities			
	XII.1	MTI Micro Fuel Cells Inc.: Commercialization of 1 Watt Consumer Electronics Power Pack1287			
	XII.2	Jadoo Power, Inc.: Jadoo Power Fuel Cell Demonstration			
	XII.3	University of North Florida: Advanced Direct Methanol Fuel Cell for Mobile Computing 1294			
	XII.4	Delphi Automotive Systems, LLC: Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration			
	XII.5	Sprint Nextel: Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network			
	XII.6	ReliOn Inc.: PEM Fuel Cell Systems Providing Backup Power to Commercial Cellular Towers and an Electric Utility Communications Network			
	XII.7	National Renewable Energy Laboratory: Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation			
	XII.8	Nuvera Fuel Cells, Inc.: H-E-B Grocery Total Power Solution for Fuel Cell-Powered Material Handling Equipment			
	XII.9	FedEx Freight: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment			
	XII.10	Sysco of Houston: Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment			
	XII.11	· · · · · · · · · · · · · · · · · · ·			
	XII.12	Plug Power Inc.: Highly Efficient, 5 kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications			
	XII.13	Plug Power Inc.: Accelerating Acceptance of Fuel Cell Backup Power Systems			
XIII.	Small Business	s Innovation Research			
	XIII.0	Small Business Innovation Research (SBIR) Hydrogen Program New Projects Awarded in FY 2011			
	Dhaca I	Projects			
	XIII.1	Ultra-Lightweight High Pressure Hydrogen Fuel Tanks Reinforced with Carbon Nanotubes 1333			
	XIII.1 XIII.2	Alternative Fiber Evaluation and Optimization of Filament Winding Processing			
		New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs			
	XIII.4	Fuel Cell Range Extender for Battery-Powered Airport Ground Support Equipment			
XIV.	Acronyms, Ab	breviations and Definitions			
VII	Duimour Conto	acts Index			

Table of Contents

XVI. Hydrogen Program Contacts	1357
XVII. Project Listings by State	1361
XVIII. Project Listings by Organization	1385